How do you find the domain and range of # y = (x(x-3) )/ (x-4)#?

1 Answer
Jul 9, 2017

Domain: #x in RR | x!=4#, in interval notation: #(-oo , 4) uu (4, oo)#
Range : # y in RR# , in interval notation: #(-oo , oo)#

Explanation:

#y = (x(x-3))/(x-4)#

Domain: Denominator is undefined at #0 :. x-4 != 0 or x != 4#

Domain: #x# may be any real number except #4 :. x in RR | x!=4#

In interval notation: #(-oo , 4) uu (4, oo)#

Range : Any real number i.e # y in RR#

In interval notation: #(-oo , oo)#

graph{(x(x-3))/(x-4) [-640, 640, -320, 320]}