How do you find the exact functional value csc 285º using the cosine sum or difference identity?

1 Answer
Sep 11, 2015

Find sin 285

Ans: #- sqrt(2 + sqrt3)/2#

Explanation:

#csc 285 = 1/sin 285#. Find sin 185
#sin 285 = sin (105 + 180) = - sin 105 = - sin (15 + 90) = - cos 15#
Find cos 15.
Apply the trig identity: #cos 2a = 2cos^2 a - 1#
#cos 30 = sqrt3/2 = 2cos^2 15 - 1#
#2cos^2 15 = (2 + sqrt3)/2#
#cos^2 15 = (2 + sqrt3)/4#
#cos 15 = +- sqrt(2 + sqrt3)/2#
Since the arc 285 is located in Quadrant IV, its sine is negative, then,
#sin 285 = - sqrt(2 + sqrt3)/2#
Check by calculator.
sin 285 = - 0.97
#- sqrt(2 + sqrt3)/2 = - 1.93/2 = -0.97.# OK