How do you find the exact solutions of the equation (sin2x+cos2x)2=1 in the interval [0,2π)?

1 Answer
Jan 25, 2017

Exact solution in interval [0,2π) is {0,π4,π2,3π4,π,5π4,3π2,7π4}

Explanation:

(sin2x+cos2x)2=1 can be expanded as

sin2(2x)+cos2(2x)+2sin2xcos2x=1

or sin2(2x)+cos2(2x)+2sin2xcos2x=1

or 1+sin4x=1

i.e. sin4x=0

and hence 4x=nπ and x=nπ4

Hence, exact solution in interval [0,2π) is {0,π4,π2,3π4,π,5π4,3π2,7π4}