How do you find the exact solutions of the equation #sin4x=-2sin2x# in the interval #[0,2pi)#?

1 Answer
Jan 15, 2017

#0, pi/2, pi, (3pi)/2#

Explanation:

Bring the equation to standard form:
sin 4x + 2sin 2x = 0
Substitute (sin 4x) by (2sin 2x.cos 2x) (trig identity):
2sin 2x.cos 2x + 2sin 2x = 0
2sin 2x(cos 2x + 1) = 0
a. sin 2x = 0 -->
Unit circle gives 3 solutions for 2x -->
2x = 0, --> #x = 0#
2x = pi, #x = pi/2# -->
2x = 2pi --> #x = pi#
b. cos 2x = - 1
Unit circle give 2 solutions for 2x -->
#2x = pi# --> #x = pi/2#
#2x = 3pi# --> #x = (3pi)/2#
Answers for #(0, 2pi)#
#0, pi/2, pi, (3pi)/2#
General answers: #x = k(pi/2)#