How do you find the exact solutions of the equation tan2x-cotx=0 in the interval [0,2pi)?

2 Answers
Jan 23, 2017

pi/6, pi/2

Explanation:

tan 2x - cot x = 0
(sin 2x)/(cos 2x) - cos x/(sin x) = 0
(sin x.sin 2x - cos x.cos 2x)/(sin x.cos 2x) = 0
(sin x.sin 2x - cos x.cos 2x) = 0
Use trig identity: cos (a + b) = cos a.cos b - sin a.sin b
In this case we have:
sin x.cos 2x - cos x.cos 2x = - cos (x + 2x) = - cos 3x = 0
cos 3x = 0
Trig unit circle gives:
a. 3x = pi/2 --> x = pi/6
b. 3x = (3pi)/2 --> x = (3pi)/6 = pi/2
Answers for (0, 2pi): pi/6 and pi/2
Check:
If x = pi/6 --> 2x = pi/3 --> tan 2x = sqrt3 --> cot x = cot (pi/6) = sqrt3, then: tan 2x - cot x = sqrt3 - sqrt3 = 0. OK
If x = pi/2 --> 2x = pi --> tan 2x = tan pi = 0 --> cot x = cot (pi/2) = 0, then: tan 2x - cot x = 0 - 0 = 0. OK

Jan 23, 2017

Possible solutions in the interval [0,2pi) are {pi/6,(5pi)/6,(7pi)/6,(11pi)/6}

Explanation:

tan2x-cotx=0

hArr(2tanx)/(1-tan^2x)=1/tanx

or 2tan^2x=1-tan^2x

or 3tan^2x-1=0

i.e. (sqrt3tanx+1)(sqrt3tanx-1)=0

i.e. tanx=1/sqrt3 or -1/sqrt3

Hence x=npi+-pi/6

and possible solutions in the interval [0,2pi) are

{pi/6,(5pi)/6,(7pi)/6,(11pi)/6}