How do you find the exact solutions of the equation #tan2x-cotx=0# in the interval #[0,2pi)#?
2 Answers
Explanation:
tan 2x - cot x = 0
(sin x.sin 2x - cos x.cos 2x) = 0
Use trig identity: cos (a + b) = cos a.cos b - sin a.sin b
In this case we have:
sin x.cos 2x - cos x.cos 2x = - cos (x + 2x) = - cos 3x = 0
cos 3x = 0
Trig unit circle gives:
a.
b.
Answers for
Check:
If
If
Possible solutions in the interval
Explanation:
or
or
i.e.
i.e.
Hence
and possible solutions in the interval