How do you find the exact value for sin1(cos(2π3))?

1 Answer
Mar 29, 2018

sin1(cos(2π3))=7π6,11π6
Among which the first positive solution happens to be

sin1(cos(2π3))=7π6

Explanation:

sin1(cos(2π3))=?

2π3=ππ3

cos(2π3)=cos(ππ3)

cos(AB)=cosAcosB+sinAsinB

cos(ππ3)=cosπcos(π3)+sinπsin(π3)

cosπ=1

cos(π3)=12

sinπ=0

sin(π3)=32

cos(ππ3)=1×12+0×32

cos(2π3)=12

sin1(cos(2π3))=sin1(12)

Let

u=sin1(12)

sinu=12

sin(π6)=12
sine ratio is negative in 3rd and 4th quadrants

For angles u<2pi,

sin(π+π6)=sin(π6)->

u=π+π6=7π6

sin(2ππ6)=sin(π6)->

u=2ππ6=11π6

Hence,
Exact value of

sin1(cos(2π3))=7π6,11π6