How do you find the exact value in radians without using a calculator cos^-1 (1/2)cos1(12)?

1 Answer
Aug 6, 2018

cos^-1(1/2)=(pi/3)^R cos1(12)=(π3)R

Explanation:

We know that ,

color(red)((1)cos^-1(costheta)=theta ,where, theta in [0,pi](1)cos1(cosθ)=θ,where,θ[0,π]

(2)cos(pi/3)=1/2(2)cos(π3)=12

Using (2)(2) ,we get

cos^-1(1/2)=color(red)(cos^-1(cos(pi/3))cos1(12)=cos1(cos(π3)) and color(red)(pi/3 in[0,pi]andπ3[0,π]

cos^-1(1/2)=color(red)(pi/3).....to[color(red)(apply (1))]

Hence , cos^-1(1/2)=pi/3 radians