How do you find the exact value of arc tan (1/2)+arc tan (1/3)arctan(12)+arctan(13)?

1 Answer
May 22, 2015

In this way:

arctan(1/2)+arctan(1/3)=alphaarctan(12)+arctan(13)=α.

If we search the tangent of both members:

tan(arctan(1/2)+arctan(1/3))=tanalphatan(arctan(12)+arctan(13))=tanα

And now, using the sum angle formula of the tangent:

(tanarctan(1/2)+tanarctan(1/3))/(1-tanarctan(1/2)tanarctan(1/3))=tanalpharArrtanarctan(12)+tanarctan(13)1tanarctan(12)tanarctan(13)=tanα

(1/2+1/3)/(1-1/2*1/3)=tanalpharArrtanalpha=(5/6)/(5/6)=1rArr12+1311213=tanαtanα=5656=1

alpha=45°+k180°, or, in radians: alpha=pi/4+kpi.