How do you find the exact value of arc tan(1/2) + arc tan (1/5) + arc tan (1/8)?

1 Answer
Jun 18, 2015

pi/4rad

Explanation:

arctanx+arctany+arctanz=arctan(x+y+z-xyz)/(1-xy-yz-zx)

Let x=1/2,y=1/5, z=1/8

arctan(1/2)+arctan(1/5)+arctan(1/8)=

=arctan((1/2)+(1/5)+(1/8)-(1/2*1/5*1/8))/(1-(1/2*1/5)(1/5*1/8)(1/8*1/2)

=arctan(0.8125/0.8125)

=arctan(cancel(0.8125)/cancel(0.8125))

=arctan(1)

=arctan(tan(pi/4))[from angle table]

=cancel(arctan)cancel(tan)((pi/4))

=pi/4