How do you find the exact value of #arccos(sin(pi/3))#?

2 Answers
Oct 6, 2016

#pi/6#

Explanation:

knowing that #sin(pi/3)=sqrt3/2#
#" "#
#arccos(sin(pi/3))=arccos((sqrt3)/2)#
#" "#
we know that #cos(pi/6)=sqrt3/2#
#" "#
so, #pi/6=arccos(sqrt3/2)#
#" "#
#arccos(sin(pi/3))=arccos((sqrt3)/2)=pi/6#

Nov 6, 2017

#arccos(sin(1/3pi))=1/6pi#

Explanation:

By definition, #cos(1/2pi-theta)=sintheta# for all #theta#

#therefore arccos (sin(1/3pi))=arccos (cos(1/2pi-1/3pi))=arccos (cos (1/6pi))=1/6pi#