How do you find the exact value of arctan(12)+arctan(13)?

1 Answer
May 14, 2015

Suppose α=arctan(12) and β=arctan(13)

What is the value of tan(α+β) ?

It's probably easiest to calculate sinα, cosα, sinβ and cosβ first:

If α=arctan(12), then 12=tanα=sinαcosα.

Multiplying through by 2cosα we get

cosα=2sinα

Squaring both sides and using sin2α+cos2α=1 we get

4sin2α=cos2α=1sin2α

Adding sin2α to both sides and dividing by 5 we get

sin2α=15

So sinα=15 and cosα=2sinα=25.

Similarly, we can find sinβ=110 and cosβ=310.

Now we can calculate

tan(α+β)=sin(α+β)cos(α+β)

=sinαcosβ+sinβcosαcosαcosβsinαsinβ

The numerator:

sinαcosβ+sinβcosα

=(15)(310)+(110)(25)

=550=12

The denominator:

cosαcosβsinαsinβ

(25)(310)(15)(110)

=550=12

So putting these together:

tan(α+β)=1212=1

So α+β=π4