How do you find the exact value of arctan(1) + arctan(2) + arctan(3) ? Trigonometry Inverse Trigonometric Functions Basic Inverse Trigonometric Functions 1 Answer Arunraju Naspuri Jun 26, 2015 Answer is 0. Explanation: arctanx+arctany+arctanz=arctan(x+y+z-xyz)/(1-xy-yz-zx) Let x=1,y=2, z=3 arctan(1)+arctan(2)+arctan(3)= =arctan((1)+(2)+(3)-(1*2*3))/(1-(1*2)(2*3)(3*1) =arctan(0/(-35)) =arctan(0) =arctan(0) =arctan(tan0))[from angle table] =cancel(arctan)cancel(tan)((0)) =0 Answer link Related questions What are the Basic Inverse Trigonometric Functions? How do you use inverse trig functions to find angles? How do you use inverse trigonometric functions to find the solutions of the equation that are in... How do you use inverse trig functions to solve equations? How do you evalute sin^-1 (-sqrt(3)/2)? How do you evalute tan^-1 (-sqrt(3))? How do you find the inverse of f(x) = \frac{1}{x-5} algebraically? How do you find the inverse of f(x) = 5 sin^{-1}( frac{2}{x-3} )? What is tan(arctan 10)? How do you find the arcsin(sin((7pi)/6))? See all questions in Basic Inverse Trigonometric Functions Impact of this question 3523 views around the world You can reuse this answer Creative Commons License