How do you find the exact value of arctan(1) + arctan(2) + arctan(3) ?

1 Answer
Jun 26, 2015

Answer is 0.

Explanation:

arctanx+arctany+arctanz=arctan(x+y+z-xyz)/(1-xy-yz-zx)

Let x=1,y=2, z=3

arctan(1)+arctan(2)+arctan(3)=

=arctan((1)+(2)+(3)-(1*2*3))/(1-(1*2)(2*3)(3*1)

=arctan(0/(-35))

=arctan(0)

=arctan(0)

=arctan(tan0))[from angle table]

=cancel(arctan)cancel(tan)((0))

=0