#arcsin(−3/5)=x# means #sinx=(-3/5)=-0.6#.
As #sinx=0.6# for #x=36.87^o# and sine is negative in third and fourth quadrant, #x=180^o+36.87^o# or #216.87^o# and #x=360^o-36.87^o=323.13^o#.
#arctan(5/12)=x# means #tanx=(5/12)#.
As #tanx=5/12# for #x=22.62^o# and tan is positive in first and third quadrant, #x=22.62^o# or #x=180^o +22.62^o#.or #202.62^o#.
Hence #cos{2arcsin(−3/5)-arctan(5/12)]=cos[2xx216.87^o-22.62^o]=cos411.12^o=cos51.12^o=0.6277# or
#cos{2arcsin(−3/5)-arctan(5/12)]=cos[2xx216.87^o-202.62^o]=cos411.12^o=cos231.12^o=-0.6277# or
#cos{2arcsin(−3/5)-arctan(5/12)]=cos[2xx323.13^o-22.62^o]=cos623.64^o=-0.1108# or
#cos{2arcsin(−3/5)-arctan(5/12)]=cos[2xx323.13^o-202.62^o]=cos443.64^o=0.1108#