How do you find the exact value of cos(arctan(3/4))cos(arctan(34))?

1 Answer
Dec 28, 2016

cosy=4/5cosy=45

Explanation:

Pose:

y=arctan(3/4)y=arctan(34)

this means that:

tany=3/4tany=34

Using the trigonometric identity sec^2t=1+tan^2tsec2t=1+tan2t:

1/cos^2y = 1+tan^2y = 1+9/16=25/161cos2y=1+tan2y=1+916=2516

or:

cos^2y = 16/25cos2y=1625

and:

cosy=4/5cosy=45

where we take the positive root, since arctan(3/4)arctan(34) is in the interval (0,pi/2)(0,π2)