How do you find the exact value of #cos(tan^-1 (5/12)+cot^-1 (5/12))#?

1 Answer
Feb 25, 2016

#cos(tan^(−1)(5/12)+cot^(−1)(5/12))=cos(pi/2)=0#

Explanation:

Remember the trigonometric identity

#tantheta=cot(pi/2-theta)=x# i.e.

#tan^-1x=theta# and #cot^-1x=(pi/2-theta)#

Hence, for any #x#, #tan^(−1)x+cot^(−1)x=(theta+pi/2-theta)=pi/2#

Hence for any #x#, #cos(tan^(−1)x+cot^(−1)x)=cos(pi/2)=0#

Note that #x# is equal to #tantheta#, #x# can take any value #{-oo,oo}# (as this is the range of #tantheta#) including #5/12#.