How do you find the exact value of sin^-1(cos(pi/3))sin1(cos(π3))?

1 Answer
Jul 26, 2016

Use sin^(-1)sin x = xsin1sinx=x

Here, sin^(-1)cos(pi/3)=sin^(-1)sin(pi/2-pi/3)=pi/2-pi/3=pi/6sin1cos(π3)=sin1sin(π2π3)=π2π3=π6.

This is the conventional principal value.

The general value for the angle whose sine = cos (pi/3)=sin(pi/6)cos(π3)=sin(π6) is

npi+(-1)^npi/6, n = 0, +-1, +-2, +-3, ...