How do you find the exact value of sin[arccos(23)+arcsin(14)]?

1 Answer
Jul 26, 2016

sin(arccos(23)+arcsin(14))=531216

Explanation:

Let α=arccos(23) and β=arcsin(14)

α is in Q2, so sin(α)>0 and we find:

sin(α)=1cos2(α)=1(23)2=59=53

β is in Q1, so cos(β)>0 and we find:

cos(β)=1sin2(β)=1(14)2=1516=154

Then:

sin(α+β)

=sinαcosβ+sinβcosα

=(53)(154)+(14)(23)

=531216