How do you find the exact value of sin[arccos(-2/3)+arcsin(1/4)]?
1 Answer
Jul 26, 2016
Explanation:
Let
sin(alpha) = sqrt(1-cos^2(alpha)) = sqrt(1-(-2/3)^2) = sqrt(5/9) = sqrt(5)/3
cos(beta) = sqrt(1-sin^2(beta))= sqrt(1-(1/4)^2) = sqrt(15/16) = sqrt(15)/4
Then:
sin(alpha+beta)
= sin alpha cos beta + sin beta cos alpha
=(sqrt(5)/3)(sqrt(15)/4) + (1/4)(-2/3)
=(5sqrt(3))/12-1/6