How do you find the exact value of #sin[arccos(-2/3)+arcsin(1/4)]#?
1 Answer
Jul 26, 2016
Explanation:
Let
#sin(alpha) = sqrt(1-cos^2(alpha)) = sqrt(1-(-2/3)^2) = sqrt(5/9) = sqrt(5)/3#
#cos(beta) = sqrt(1-sin^2(beta))= sqrt(1-(1/4)^2) = sqrt(15/16) = sqrt(15)/4#
Then:
#sin(alpha+beta)#
#= sin alpha cos beta + sin beta cos alpha#
#=(sqrt(5)/3)(sqrt(15)/4) + (1/4)(-2/3)#
#=(5sqrt(3))/12-1/6#