How do you find the exact value of sin[arccos(-2/3)+arcsin(1/4)]sin[arccos(23)+arcsin(14)]?

1 Answer
Jul 26, 2016

sin(arccos(-2/3)+arcsin(1/4))=(5sqrt(3))/12-1/6sin(arccos(23)+arcsin(14))=531216

Explanation:

Let alpha = arccos(-2/3)α=arccos(23) and beta = arcsin(1/4)β=arcsin(14)

alphaα is in Q2, so sin(alpha) > 0sin(α)>0 and we find:

sin(alpha) = sqrt(1-cos^2(alpha)) = sqrt(1-(-2/3)^2) = sqrt(5/9) = sqrt(5)/3sin(α)=1cos2(α)=1(23)2=59=53

betaβ is in Q1, so cos(beta) > 0cos(β)>0 and we find:

cos(beta) = sqrt(1-sin^2(beta))= sqrt(1-(1/4)^2) = sqrt(15/16) = sqrt(15)/4cos(β)=1sin2(β)=1(14)2=1516=154

Then:

sin(alpha+beta)sin(α+β)

= sin alpha cos beta + sin beta cos alpha=sinαcosβ+sinβcosα

=(sqrt(5)/3)(sqrt(15)/4) + (1/4)(-2/3)=(53)(154)+(14)(23)

=(5sqrt(3))/12-1/6=531216