How do you find the exact value of sin[arccos(-2/3)+arcsin(1/4)]?

1 Answer
Jul 26, 2016

sin(arccos(-2/3)+arcsin(1/4))=(5sqrt(3))/12-1/6

Explanation:

Let alpha = arccos(-2/3) and beta = arcsin(1/4)

alpha is in Q2, so sin(alpha) > 0 and we find:

sin(alpha) = sqrt(1-cos^2(alpha)) = sqrt(1-(-2/3)^2) = sqrt(5/9) = sqrt(5)/3

beta is in Q1, so cos(beta) > 0 and we find:

cos(beta) = sqrt(1-sin^2(beta))= sqrt(1-(1/4)^2) = sqrt(15/16) = sqrt(15)/4

Then:

sin(alpha+beta)

= sin alpha cos beta + sin beta cos alpha

=(sqrt(5)/3)(sqrt(15)/4) + (1/4)(-2/3)

=(5sqrt(3))/12-1/6