How do you find the exact value of sin(arcsin(13)arcsin(14))?

1 Answer
Dec 22, 2016

112(1522)=0.0870, nearly.

Explanation:

Use sin(ab)=sinacosbcosasinbandff1(y)=y. and, for x in

Q1, cos x = sqrt(1-sin^2 x) and, likewise, sin x = sqrt( 1-cos^2x)#

The given expression becomes

sinarcsin(13)cossinarcsin(14)cosarcsin(13)sinarcarcsin(14)

=13cosarccos1(14)214cosarccos1(13)2

=13111614119

112(1522).