How do you find the exact value of sin(arcsin(23)+arccos(13))?

1 Answer
Mar 20, 2018

sin(arcsin(23)+arccos(13))=2(1+10)9

Explanation:

Using the formula for the sine of the sum of two angles:

sin(arcsin(23)+arccos(13))=sin(arcsin(23))cos(arccos(13))+cos(arcsin(23))sin(arccos(13))

Now, clearly:

sin(arcsin(23))=23

cos(arccos(13))=13

while:

cos(arcsin(23))=1sin2(arcsin(23))=149=53

sin(arccos(13))=1cos2(arccos(13))=119=223

Where we take the positive value because the angles are in the first quadrant.

Then:

sin(arcsin(23)+arccos(13))=2313+53223=2(1+10)9