How do you find the exact value of Sin(arcsin(3/5)+(arctan-2))?

1 Answer

sin(arcsin(3/5)+(arctan (-2)))=color(red)(-sqrt5/5) and

sin(arcsin(3/5)+(arctan (-2)))=color(red)(sqrt5/5)

Explanation:

There are 2 possible answers:

First solution

sin (arcsin (3/5)+arctan (-2))

sin (A+B)

Let A=arcsin (3/5) and B=arctan (color(blue)(-2)/1)

then sin A=3/5 and

computed using Pythagorean relation c^2=a^2+b^2

cos A=4/5

also

sin B=(-2)/sqrt5

cos B=1/sqrt5

compute sin (A+B)
sin (A+B)=sin A cos B + cos A sin B

sin (A+B)=3/5* 1/sqrt5 + 4/5 *(-2)/sqrt5=-5/(5sqrt5)

sin (A+B)=-1/sqrt5=-sqrt5/5
color(green) ("The 4th quadrant angle")=A+B=-63.4349^@

second solution

sin (arcsin (3/5)+arctan (-2))

sin (A+B)

Let A=arcsin (3/5) and B=arctan (2/color (blue)(-1))

then sin A=3/5 and

computed using Pythagorean relation c^2=a^2+b^2

cos A=4/5

also

sin B=2/sqrt5

cos B=(-1)/sqrt5

compute sin (A+B)
sin (A+B)=sin A cos B + cos A sin B

sin (A+B)=3/5* (-1)/sqrt5 + 4/5 *2/sqrt5=5/(5sqrt5)

sin (A+B)=1/sqrt5=sqrt5/5

color(green) ("The 2nd quadrant angle")=A+B=116.565^@
Have a nice day !!! from the Philippines