There are 2 possible answers:
First solution
sin (arcsin (3/5)+arctan (-2))
sin (A+B)
Let A=arcsin (3/5) and B=arctan (color(blue)(-2)/1)
then sin A=3/5 and
computed using Pythagorean relation c^2=a^2+b^2
cos A=4/5
also
sin B=(-2)/sqrt5
cos B=1/sqrt5
compute sin (A+B)
sin (A+B)=sin A cos B + cos A sin B
sin (A+B)=3/5* 1/sqrt5 + 4/5 *(-2)/sqrt5=-5/(5sqrt5)
sin (A+B)=-1/sqrt5=-sqrt5/5
color(green) ("The 4th quadrant angle")=A+B=-63.4349^@
second solution
sin (arcsin (3/5)+arctan (-2))
sin (A+B)
Let A=arcsin (3/5) and B=arctan (2/color (blue)(-1))
then sin A=3/5 and
computed using Pythagorean relation c^2=a^2+b^2
cos A=4/5
also
sin B=2/sqrt5
cos B=(-1)/sqrt5
compute sin (A+B)
sin (A+B)=sin A cos B + cos A sin B
sin (A+B)=3/5* (-1)/sqrt5 + 4/5 *2/sqrt5=5/(5sqrt5)
sin (A+B)=1/sqrt5=sqrt5/5
color(green) ("The 2nd quadrant angle")=A+B=116.565^@
Have a nice day !!! from the Philippines