How do you find the exact value of tan(arcsin(-3/4))tan(arcsin(34))?

2 Answers
May 22, 2017

-(3sqrt7)/7377

Explanation:

Let's think about it this way:

We're trying to find the tangent of the angle whose sine is -3/434.

Let's call this angle thetaθ. Using the Pythagorean identity, we can solve for costhetacosθ:

sin^2theta+cos^2theta=1sin2θ+cos2θ=1

(-3/4)^2+cos^2theta=1(34)2+cos2θ=1

9/16 + cos^2theta=1916+cos2θ=1

cos^2theta = 7/16cos2θ=716

costheta = +-sqrt7/4cosθ=±74

Since sinthetasinθ is negative, thetaθ must be in quadrant 4 since arcsin(x)arcsin(x) is only defined for quadrants 1 (+) and 4 (-). In quadrant 4, costhetacosθ is always positive, so it must be sqrt7/474.

We now know sintheta=-3/4sinθ=34 and costheta = sqrt7/4cosθ=74. This means we can solve for tanthetatanθ, which is what we're looking for.

tantheta=sintheta/costhetatanθ=sinθcosθ

tantheta = (-3/4)/(sqrt7/4) = -3/sqrt7 = -(3sqrt7)/7tanθ=3474=37=377

Therefore, the exact value of tan(arcsin(-3/4))tan(arcsin(34)) is -(3sqrt7)/7377.

Final Answer

May 22, 2017

(-3)/sqrt(7)37 or (-3sqrt(7))/7377

Explanation:

Domain of arcsin is the 1st quadrant is positive, 4th quadrant is negative. So, -3/434 is in the 4th quadrant.

Arcsin corresponds to the ratio of (opp)/(hyp)opphyp

color(white)(0)0

color(white)(4)color(black)(---------)4
color(white)(4)color(black)(\)color(black)(theta)color(white)(- - - - - - - -)color(black)(|)4θ
color(white)(4)color(white)( - )color(black)(\)color(white)(theta)color(white)(- - -)color(white)( - - - / - .)color(white)(/)color(black)(|)4θ./
color(white)(4)color(white)(- -)color(black)(\)color(white)(theta)color(white)(- - - - - - /)color(black)(|)
color(white)(4)color(white)(- - -)color(black)(\)color(white)(theta)color(white)(- - - - -/)color(black)(|)
color(white)(- - -)color(black)(4)color(white)(-)color(black)(\)color(white)(theta)color(white)(- - - -/)color(black)(|)-3
color(white)(4)color(white)(- - - - -)color(black)(\)color(white)(theta)color(white)(- - -/)color(black)(|)
color(white)(4)color(white)(- - - - - -)color(black)(\)color(white)(theta)color(white)(- -/)color(black)(|)
color(white)(4)color(white)(- - - - - - -)color(black)(\)color(white)(theta)color(white)(-)color(black)(|)
color(white)(4)color(white)(- - - - - - - -)color(black)(\)color(white)(theta)color(black)(|)

Let's solve for the remaining side:
4^2-3^2=7^2=sqrt7

color(white)(000000000)sqrt7

color(white)(4)color(black)(---------)
color(white)(4)color(black)(\)color(black)(theta)color(white)(- - - - - - - -)color(black)(|)
color(white)(4)color(white)( - )color(black)(\)color(white)(theta)color(white)(- - -)color(white)( - - - / - .)color(white)(/)color(black)(|)
color(white)(4)color(white)(- -)color(black)(\)color(white)(theta)color(white)(- - - - - - /)color(black)(|)
color(white)(4)color(white)(- - -)color(black)(\)color(white)(theta)color(white)(- - - - -/)color(black)(|)
color(white)(- - -)color(black)(4)color(white)(-)color(black)(\)color(white)(theta)color(white)(- - - -/)color(black)(|)-3
color(white)(4)color(white)(- - - - -)color(black)(\)color(white)(theta)color(white)(- - -/)color(black)(|)
color(white)(4)color(white)(- - - - - -)color(black)(\)color(white)(theta)color(white)(- -/)color(black)(|)
color(white)(4)color(white)(- - - - - - -)color(black)(\)color(white)(theta)color(white)(-)color(black)(|)
color(white)(4)color(white)(- - - - - - - -)color(black)(\)color(white)(theta)color(black)(|)

Now we need to find tan(theta), which is a ratio again

tan(theta)=(-3)/sqrt(7)