Domain of arcsin is the 1st quadrant is positive, 4th quadrant is negative. So, #-3/4# is in the 4th quadrant.
Arcsin corresponds to the ratio of #(opp)/(hyp)#
#color(white)(0)#
#color(white)(4)color(black)(---------)#
#color(white)(4)color(black)(\\)color(black)(theta)color(white)(- - - - - - - -)color(black)(|)#
#color(white)(4)color(white)( - )color(black)(\\)color(white)(theta)color(white)(- - -)color(white)( - - -
/ - .)color(white)(/)color(black)(|)#
#color(white)(4)color(white)(- -)color(black)(\\)color(white)(theta)color(white)(- - - - - - /)color(black)(|)#
#color(white)(4)color(white)(- - -)color(black)(\\)color(white)(theta)color(white)(- - - - -/)color(black)(|)#
#color(white)(- - -)color(black)(4)color(white)(-)color(black)(\\)color(white)(theta)color(white)(- - - -/)color(black)(|)-3#
#color(white)(4)color(white)(- - - - -)color(black)(\\)color(white)(theta)color(white)(- - -/)color(black)(|)#
#color(white)(4)color(white)(- - - - - -)color(black)(\\)color(white)(theta)color(white)(- -/)color(black)(|)#
#color(white)(4)color(white)(- - - - - - -)color(black)(\\)color(white)(theta)color(white)(-)color(black)(|)#
#color(white)(4)color(white)(- - - - - - - -)color(black)(\\)color(white)(theta)color(black)(|)#
Let's solve for the remaining side:
#4^2-3^2=7^2=sqrt7#
#color(white)(000000000)sqrt7#
#color(white)(4)color(black)(---------)#
#color(white)(4)color(black)(\\)color(black)(theta)color(white)(- - - - - - - -)color(black)(|)#
#color(white)(4)color(white)( - )color(black)(\\)color(white)(theta)color(white)(- - -)color(white)( - - -
/ - .)color(white)(/)color(black)(|)#
#color(white)(4)color(white)(- -)color(black)(\\)color(white)(theta)color(white)(- - - - - - /)color(black)(|)#
#color(white)(4)color(white)(- - -)color(black)(\\)color(white)(theta)color(white)(- - - - -/)color(black)(|)#
#color(white)(- - -)color(black)(4)color(white)(-)color(black)(\\)color(white)(theta)color(white)(- - - -/)color(black)(|)-3#
#color(white)(4)color(white)(- - - - -)color(black)(\\)color(white)(theta)color(white)(- - -/)color(black)(|)#
#color(white)(4)color(white)(- - - - - -)color(black)(\\)color(white)(theta)color(white)(- -/)color(black)(|)#
#color(white)(4)color(white)(- - - - - - -)color(black)(\\)color(white)(theta)color(white)(-)color(black)(|)#
#color(white)(4)color(white)(- - - - - - - -)color(black)(\\)color(white)(theta)color(black)(|)#
Now we need to find #tan(theta)#, which is a ratio again
#tan(theta)=(-3)/sqrt(7)#