How do you find the first and second derivative of ln(ln x)ln(lnx)?

1 Answer
Sep 11, 2016

1/(xlnx)1xlnx

Explanation:

First derviative: d/dxln(ln(x))ddxln(ln(x))

Chain rule: d/dxf(g(x))=f'(g(x))*g'(x)

Let g=ln(x)

f(g)=ln(g), g(x)=ln(x)

f'(g)=1/g, g'(x)=1/x

f'(x)=1/ln(a)

f'(g(x))*g'(x)=(1/ln(x)*1/x)

1/(xlnx)

Second Derivative: d/dx(1/ln(x)*1/x)

Product rule: f(x)g'(x)+f'(x)g(x)

f(x)=1/lnx, g(x)=1/x

1/lnxd/dx(x^-1)+d/dx(lnx)^-1(1/x)

-1/(x^2lnx)-1/(x^2ln^2(x)