How do you find the first and second derivative of (lnx)^2?

1 Answer
Jan 12, 2018

"see explanation"

Explanation:

"differentiate using the "color(blue)"chain rule"

"given "y=f(g(x))" then"

dy/dx=f'(g(x)xxg'(x)larrcolor(blue)"chain rule"

rArrd/dx((lnx)^2)

=2lnx xxd/dx(lnx)=(2lnx)/xlarrcolor(blue)"first derivative"

"differentiate first derivative to obtain second derivative"

d/dx((2lnx)/x)

"differentiate using the "color(blue)"product rule"

"given "y=g(x)h(x)" then"

dy/dx=g(x)h'(x)+h(x)g'(x)larrcolor(blue)"product rule"

"express "(2lnx)/x=2lnx .x^-1

g(x)=2lnxrArrg'(x)=2/x

h(x)=x^-1rArrh'(x)=-x^-2=-1/x^2

rArrd/dx(2lnx .x^-1)

=-2lnx . 1/x^2+1/x . 2/x

=2/x^2-(2lnx)/x^2larrcolor(blue)"second derivative"