How do you find the first and second derivative of (lnx)^2?
1 Answer
Jan 12, 2018
Explanation:
"differentiate using the "color(blue)"chain rule"
"given "y=f(g(x))" then"
dy/dx=f'(g(x)xxg'(x)larrcolor(blue)"chain rule"
rArrd/dx((lnx)^2)
=2lnx xxd/dx(lnx)=(2lnx)/xlarrcolor(blue)"first derivative"
"differentiate first derivative to obtain second derivative"
d/dx((2lnx)/x)
"differentiate using the "color(blue)"product rule"
"given "y=g(x)h(x)" then"
dy/dx=g(x)h'(x)+h(x)g'(x)larrcolor(blue)"product rule"
"express "(2lnx)/x=2lnx .x^-1
g(x)=2lnxrArrg'(x)=2/x
h(x)=x^-1rArrh'(x)=-x^-2=-1/x^2
rArrd/dx(2lnx .x^-1)
=-2lnx . 1/x^2+1/x . 2/x
=2/x^2-(2lnx)/x^2larrcolor(blue)"second derivative"