How do you find the first and second derivative of sin^2(lnx)?

1 Answer
May 9, 2016

Use of chain rule twice and at the second derivative use of quotent rule.

First derivative

2sin(lnx)*cos(lnx)*1/x

Second derivative

(2cos(2lnx)-sin(2lnx))/x^2

Explanation:

First derivative

(sin^2(lnx))'

2sin(lnx)*(sin(lnx))'

2sin(lnx)*cos(lnx)(lnx)'

2sin(lnx)*cos(lnx)*1/x

Although this is acceptable, to make the second derivative easier, one can use the trigonometric identity:

2sinθcosθ=sin(2θ)

Therefore:

(sin^2(lnx))'=sin(2lnx)/x

Second derivative

(sin(2lnx)/x)'

(sin(2lnx)'x-sin(2lnx)(x)')/x^2

(cos(2lnx)(2lnx)'x-sin(2lnx)*1)/x^2

(cos(2lnx)*2*1/x*x-sin(2lnx))/x^2

(2cos(2lnx)-sin(2lnx))/x^2