How do you find the first three terms of the arithmetic series a1=11, an=110, Sn=726?

1 Answer
Nov 8, 2016

First three terms: 11,20,29.

Explanation:

Write a systems of equations.

tn=a+(n1)d

sn=n2(2a+(n1)d)

So,

110=11+(n1)d
726=n2(22+(n1)d)

Simplify before using substitution.

726=n2(22+ndd)

726=22n+n2dnd2

145222n=n2dnd

145222n=d(n2n)

145222nn2n=d

110=11+(n1)(145222nn2n)

99=(n1)145222nn(n1)

99=145222nn

99n=145222n

121n=1452

n=12

Now, we can substitute into equation 1 to find the common difference.

110=11+(121)d

99=11d

d=9

The first 3 terms are 11,20and29.

Hopefully this helps!