How do you find the holes for (2x^3-5x^2-9x+18) / (x^2 - x - 6)2x3−5x2−9x+18x2−x−6?
1 Answer
There are holes at
Explanation:
Factoring the denominator, we find:
x^2-x-6 = (x+2)(x-3)x2−x−6=(x+2)(x−3)
So the denominator is zero when
At any hole, both the numerator and denominator are zero. Note this condition is required but not sufficient.
Let
Then
So
2x^3-5x^2-9x+182x3−5x2−9x+18
=(x+2)(2x^2-9x+9)=(x+2)(2x2−9x+9)
=(x+2)(x-3)(2x-3)=(x+2)(x−3)(2x−3)
So we find:
(2x^3-5x^2-9x+18)/(x^2-x-6) = (color(red)(cancel(color(black)((x+2))))color(red)(cancel(color(black)((x-3))))(2x-3))/(color(red)(cancel(color(black)((x+2))))color(red)(cancel(color(black)((x-3))))) = 2x-3
excluding
The singularities at