How do you find the horizontal asymptote for b(x)= (x^3-x+1)/(2x^4+x^3-x^2-1)?

1 Answer
Jan 6, 2016

The secret is factorization :

b(x)= (x^3-x+1)/(2x^4+x^3-x^2-1) =(x^3(1-1/x^2+1/x^3))/(x^4(2+1/x-1/x^2-1/x^4))

b(x)=(1-1/x^2+1/x^3)/(x(2+1/x-1/x^2-1/x^4)

lim_(x->+oo) (1-1/x^2+1/x^3)/(x(2+1/x-1/x^2-1/x^4)) = 1/(oo) = 0^+

lim_(x->-oo) (1-1/x^2+1/x^3)/(x(2+1/x-1/x^2-1/x^4)) = -1/(oo) = 0^-