How do you find the horizontal asymptote for fR(x)=(3x+5) /(x-6)?

1 Answer
Mar 16, 2018

The horizontal asymptote is y=3

Explanation:

Calculate the limit as the function f(x) tend to +oo and -oo

The function is

f(x)=(3x+5)/(x-6)

The domain of f(x) is RR-{6}

f(x)=(3x+5)/(x-6)=(cancelx(3+5/x))/(cancelx(1-6/x))=(3+5/x)/(1-6/x)

The limits are

lim_(x->+oo)(5/x)=0

lim_(x->+oo)(6/x)=0

lim_(x->-oo)(5/x)=0

lim_(x->-oo)(6/x)=0

And finally

lim_(x->+oo)f(x)=lim_(x->+oo)(3+5/x)/(1-6/x)=(3-0)/(1-0)=3

The horizontal asymptote is y=3

graph{(y-(3x+5)/(x-6))(y-3)=0 [-34.77, 47.43, -16.94, 24.16]}