How do you find the indefinite integral of int root3x/(root3x-1)3x3x1?

1 Answer
Mar 20, 2018

(root3x-1)^3+(9(root3x-1)^2)/2+9(root3x-1)+3ln(abs(root3x-1))+C(3x1)3+9(3x1)22+9(3x1)+3ln(3x1)+C

Explanation:

We have int root3x/(root3x-1)dx3x3x1dx

Substitute u=(root3x-1)u=(3x1)
(du)/(dx)=x^(-2/3)/3dudx=x233

dx=3x^(2/3)dudx=3x23du

int root3x/(root3x-1)(3x^(2/3))du=int(3x)/(root3x-1)du=int(3(u+1)^3)/udu=3int(u^3+3u^2+3u+1)/udu=int3u^2+9u+9+3/udu=u^3+(9u^2)/2+9u+3ln(abs(u))+C

Resubstitute u=root3x-1:
(root3x-1)^3+(9(root3x-1)^2)/2+9(root3x-1)+3ln(abs(root3x-1))+C