How do you find the indefinite integral of #int x(cos(8x))^2dx#? Calculus Introduction to Integration Definite and indefinite integrals 1 Answer Sasha P. Oct 17, 2015 #I = x^2/4+1/32xsin16x+1/512cos16x+C# Explanation: #I=int x(cos8x)^2dx# Integratioin By Parts: #int udv = uv - int vdu# #u=x => du=dx# #(cos8x)^2=cos^2 8x = (1+cos16x)/2# #dv= (cos8x)^2dx# #v=int (cos8x)^2dx = 1/2 int (1+cos16x)dx# #v=1/2(x+1/16sin16x)# #I = x/2(x+1/16sin16x) - 1/2int (x+1/16sin16x)dx# #I = x/2(x+1/16sin16x) - 1/2(x^2/2-1/16*1/16cos16x)+C# #I = 1/2(x^2+1/16xsin16x-x^2/2+1/256cos16x)+C# #I = x^2/4+1/32xsin16x+1/512cos16x+C# Answer link Related questions What is the difference between definite and indefinite integrals? What is the integral of #ln(7x)#? Is f(x)=x^3 the only possible antiderivative of f(x)=3x^2? If not, why not? How do you find the integral of #x^2-6x+5# from the interval [0,3]? What is a double integral? What is an iterated integral? How do you evaluate the integral #1/(sqrt(49-x^2))# from 0 to #7sqrt(3/2)#? How do you integrate #f(x)=intsin(e^t)dt# between 4 to #x^2#? How do you determine the indefinite integrals? How do you integrate #x^2sqrt(x^(4)+5)#? See all questions in Definite and indefinite integrals Impact of this question 1867 views around the world You can reuse this answer Creative Commons License