How do you find the integral 1/sqrt(1+sqrt(1+x^2))11+1+x2?

1 Answer
May 13, 2015

This is hard...

int1/sqrt(1+sqrt(1+x^2))dx11+1+x2dx

We need to delete all this square !!

For this let's :

u = sqrt(1+x^2)u=1+x2

x = sqrt(u^2-1)x=u21

du = x/sqrt(1+x^2)dxdu=x1+x2dx

dx=sqrt(1+x^2)/xdudx=1+x2xdu

Integral become :

intsqrt(1+x^2)/(x*sqrt(1+sqrt(1+x^2)))du1+x2x1+1+x2du

intu/(sqrt(u^2-1)*sqrt(u+1))duuu21u+1du

Multiply numerator and denominator bysqrt(u-1)u1 and don't forget that (u+1)(u-1) = u^2-1(u+1)(u1)=u21 so we have :

(usqrt(u-1))/(u^2-1)uu1u21

Let's w = sqrt(u-1)w=u1

dw = 1/(2sqrt(u-1))dudw=12u1du

du = 2sqrt(u-1)dwdu=2u1dw

2int(usqrt(u-1))/(u^2-1)sqrt(u-1)dw2uu1u21u1dw

w^2+1=uw2+1=u

(w^2+1)^2=u^2(w2+1)2=u2

2int((w^2+1)w^2)/((w^2+1)^2-1)dw2(w2+1)w2(w2+1)21dw

2int(w^4+w^2)/(w^4+2w^2)dw2w4+w2w4+2w2dw

2int(w^2(w^2+1))/(w^2(w^2+2))dw2w2(w2+1)w2(w2+2)dw

2int(w^2+1)/(w^2+2)dw2w2+1w2+2dw

2int(w^2+2-1)/(w^2+2)dw2w2+21w2+2dw

2int1dw-2int1/(w^2+2)dw21dw21w2+2dw

2int1dw-int1/(1/2w^2+1)dw21dw112w2+1dw

Let's t =1/sqrt(2)wt=12w

t^2=1/2w^2t2=12w2

dt = 1/sqrt(2)dwdt=12dw

[2w]- sqrt(2)int1/(t^2+1)dt[2w]21t2+1dt

[2w]-[sqrt(2)arctan(t)]+C[2w][2arctan(t)]+C

Substitute back...

[2w]-[sqrt(2)arctan(1/sqrt(2)w)]+C[2w][2arctan(12w)]+C

[2sqrt(u-1)]-[sqrt(2)arctan(1/sqrt(2)sqrt(u-1))]+C[2u1][2arctan(12u1)]+C

[2sqrt(sqrt(x^2+1)-1)]-[sqrt(2)arctan(1/sqrt(2)sqrt(sqrt(x^2+1)-1))]+C[2x2+11][2arctan(12x2+11)]+C