This is hard...
int1/sqrt(1+sqrt(1+x^2))dx∫1√1+√1+x2dx
We need to delete all this square !!
For this let's :
u = sqrt(1+x^2)u=√1+x2
x = sqrt(u^2-1)x=√u2−1
du = x/sqrt(1+x^2)dxdu=x√1+x2dx
dx=sqrt(1+x^2)/xdudx=√1+x2xdu
Integral become :
intsqrt(1+x^2)/(x*sqrt(1+sqrt(1+x^2)))du∫√1+x2x⋅√1+√1+x2du
intu/(sqrt(u^2-1)*sqrt(u+1))du∫u√u2−1⋅√u+1du
Multiply numerator and denominator bysqrt(u-1)√u−1 and don't forget that (u+1)(u-1) = u^2-1(u+1)(u−1)=u2−1 so we have :
(usqrt(u-1))/(u^2-1)u√u−1u2−1
Let's w = sqrt(u-1)w=√u−1
dw = 1/(2sqrt(u-1))dudw=12√u−1du
du = 2sqrt(u-1)dwdu=2√u−1dw
2int(usqrt(u-1))/(u^2-1)sqrt(u-1)dw2∫u√u−1u2−1√u−1dw
w^2+1=uw2+1=u
(w^2+1)^2=u^2(w2+1)2=u2
2int((w^2+1)w^2)/((w^2+1)^2-1)dw2∫(w2+1)w2(w2+1)2−1dw
2int(w^4+w^2)/(w^4+2w^2)dw2∫w4+w2w4+2w2dw
2int(w^2(w^2+1))/(w^2(w^2+2))dw2∫w2(w2+1)w2(w2+2)dw
2int(w^2+1)/(w^2+2)dw2∫w2+1w2+2dw
2int(w^2+2-1)/(w^2+2)dw2∫w2+2−1w2+2dw
2int1dw-2int1/(w^2+2)dw2∫1dw−2∫1w2+2dw
2int1dw-int1/(1/2w^2+1)dw2∫1dw−∫112w2+1dw
Let's t =1/sqrt(2)wt=1√2w
t^2=1/2w^2t2=12w2
dt = 1/sqrt(2)dwdt=1√2dw
[2w]- sqrt(2)int1/(t^2+1)dt[2w]−√2∫1t2+1dt
[2w]-[sqrt(2)arctan(t)]+C[2w]−[√2arctan(t)]+C
Substitute back...
[2w]-[sqrt(2)arctan(1/sqrt(2)w)]+C[2w]−[√2arctan(1√2w)]+C
[2sqrt(u-1)]-[sqrt(2)arctan(1/sqrt(2)sqrt(u-1))]+C[2√u−1]−[√2arctan(1√2√u−1)]+C
[2sqrt(sqrt(x^2+1)-1)]-[sqrt(2)arctan(1/sqrt(2)sqrt(sqrt(x^2+1)-1))]+C[2√√x2+1−1]−[√2arctan(1√2√√x2+1−1)]+C