How do you find the integral from 0 to 2 of xe2xdx? Calculus Techniques of Integration Integration by Parts 1 Answer Equivirial Jun 6, 2015 ∫20xe2xdx=34e4+14 Use integration by parts ∫udv=uv−∫vdu Let u=x,⇒du=dx Let dv=e2xdx,⇒v=12e2x Substitute v and u into the top expression ∫20xe2xdx=[x2e2x]20−∫2012e2xdx ∫20xe2xdx=(e4−0)−[14e2x]20 ∫20xe2xdx=34e4+14 Answer link Related questions How do I find the integral ∫(x⋅ln(x))dx ? How do I find the integral ∫(cos(x)ex)dx ? How do I find the integral ∫(x⋅cos(5x))dx ? How do I find the integral ∫(x⋅e−x)dx ? How do I find the integral ∫(x2⋅sin(πx))dx ? How do I find the integral ∫ln(2x+1)dx ? How do I find the integral ∫sin−1(x)dx ? How do I find the integral ∫arctan(4x)dx ? How do I find the integral ∫x5⋅ln(x)dx ? How do I find the integral ∫x⋅2xdx ? See all questions in Integration by Parts Impact of this question 9465 views around the world You can reuse this answer Creative Commons License