How do you find the integral from e^2 to e of dx / (x * ln (x^8))dxxln(x8)?

1 Answer
Feb 1, 2017

-1/8ln2, or, -ln2/8.18ln2,or,ln28.

Explanation:

Using the usual rules of Log function, we find that the Integrand is

1/{(x)(lnx^8)}=1/{x(8lnx)}=1/(8xlnx)1(x)(lnx8)=1x(8lnx)=18xlnx

Hence, I=1/8int_(e^2) ^e 1/(xlnx)dx=1/8int_(e^2) ^e (1/(lnx))(1/xdx)I=18ee21xlnxdx=18ee2(1lnx)(1xdx)

Substitute, ln x=t rArr 1/xdx=dtlnx=t1xdx=dt

Also, x=e^2 rArr t=ln x=ln e^2=2, &, x=e rArr t=1.x=e2t=lnx=lne2=2,&,x=et=1.

:. I=1/8 int_2^1 1/t dt=1/8[ln|t|]_2^1=1/8(ln1-ln2)

"Therefore, I="-ln2/8.

Enjoy Maths.!