How do you find the integral int sqrt(x^3+x^2)(3x^2+2x)dx using substitution?

2 Answers
Mar 26, 2018

Let u = x^3 + x^2. Then du = 3x^2 +2xdx and dx= (du)/(3x^2 + 2x).

I = int sqrt(u)(3x^2 + 2x)/(3x^2 + 2x) du

I = int sqrt(u) du

I = 2/3u^(3/2) + C

I = 2/3(x^3 + x^2)^(3/2) + C

Hopefully this helps!

Mar 26, 2018

I=intsqrt(x^3+x^2)(3x^2+2x)dx=int(x^3+x^2)^(1/2)d/(dx)(x^3+x^2)dx=(x^3+x^2)^(1/2+1)/(1/2+1) +c
=2/3(x^3+x^2)^(3/2)+c

Explanation:

Here,

I=intsqrt(x^3+x^2)(3x^2+2x)dx

Substituting

x^3+x^2=u^2=>(3x^2+2x)dx=2udu

=>I=intsqrt(u^2)2udu

=intu2udu

=2intu^2 du

=2[u^3/3 ]+c

=2/3(u^2)^(3/2)+c

=2/3(x^3+x^2)^(3/2)+c