How do you find the integral ln(x^2 + 2x + 2)dx?

1 Answer
May 15, 2018

The answer is =(x+1)ln(x^2+2x+2)-2(x+1)+2arctan(x+1)+C

Explanation:

First complete the square

x^2+2x+2=(x+2)^2+1

Let

x+1=u, =>, du=dx

Therefore,

I=intln(x^2+2x+2)dx=intln((x+2)^2+1)dx

=intln(u^2+1)du

Perform the integration by parts

p=ln(u^2+1), =>, p'=(2u)/(u^2+1)

q'=1, =>, q=u

Therefore,

I=u ln(u^2+1)-int(2u^2du)/(u^2+1)

int(2u^2du)/(u^2+1)= 2int((u^2+1-1)du)/(u^2+1)

=2intdu-2int(du)/(u^2+1)

=2u-2arctan(u)

Finally,

I=u ln(u^2+1)-2u+2arctan(u)

=(x+1)ln(x^2+2x+2)-2(x+1)+2arctan(x+1)+C