How do you find the integral ln(x2+x+1)?

1 Answer
Apr 10, 2018

xln(x2+x+1)x(x+12)lncostan1(23(x+12))+3tan1(23(x+12))+C

Explanation:

ln(x2+x+1)dx

apply Integration by Parts

u=ln(x2+x+1)

du=2x+1x2+x+1dx

dv=dx

v=x

ln(x2+x+1)dx=xln(x2+x+1)x(2x+1)x2+x+1dx
(1)

Let I=x(2x+1)x2+x+1dx=

simplify

2x2+xx2+x+1dx=x2+x+1x2+x+1dx+x21x2+x+1dx

=x+x21x2+x+1dx

let r=x21x2+x+1dx

completing the square of the denominator :
r=x21(x+12)2+34dx

apply trigonometric substitution

x+12=32tanθ
dx=32sec2θd(θ)
x2=34tan2θ32tanθ+14

substitute

x21(x+12)2+34dx=(34tan2θ32tanθ+14)134tan2θ+3432sec2θd(θ)

simplify where tan2θ+1=sec2θ

4332(34tan2θ32tanθ34)d(θ)

simplify again using the relation tan2θ+1=sec2θ

23(34sec2θ32tanθ32)d(θ)=32tanθ+lncosθ3θ+C

reverse the trigonometric substitution

θ=tan1(23(x+12))

so,
r=x21x2+x+1dx=(x+12)+lncostan1(23(x+12))3tan1(23(x+12))+C

substituting in I:

I=x+(x+12)+lncostan1(23(x+12))3tan1(23(x+12))+C

and substituting with the value of I in (1)

your final integration result will be:

ln(x2+x+1)dx=xln(x2+x+1)x(x+12)lncostan1(23(x+12))+3tan1(23(x+12))+C