How do you find the integral ln(x+x21)?

1 Answer
Mar 14, 2018

ln(x+x21)dx=xln(x+x21)x21+C

Explanation:

Use a hyperbolic substitution.

Put:

x=coshu

Then:

dxdu=sinhu

and:

u=ln(x+x21)

and:

ln(x+x21)dx=ln(coshu+cosh2u1)dxdu.du

ln(x+x21)dx=ln(coshu+sinh2u)sinhu.du

ln(x+x21)dx=ln(coshu+sinhu)sinhu.du

ln(x+x21)dx=ln(eu)sinhu.du

ln(x+x21)dx=usinhu.du

ln(x+x21)dx=(usinhu+coshu)coshu.du

ln(x+x21)dx=ucoshusinhu+C

ln(x+x21)dx=xln(x+x21)x21+C