How do you find the integral ln(x+√x2−1)?
1 Answer
Mar 14, 2018
Explanation:
Use a hyperbolic substitution.
Put:
x=coshu
Then:
dxdu=sinhu
and:
u=ln(x+√x2−1)
and:
∫ln(x+√x2−1)dx=∫ln(coshu+√cosh2u−1)dxdu.du
∫ln(x+√x2−1)dx=∫ln(coshu+√sinh2u)sinhu.du
∫ln(x+√x2−1)dx=∫ln(coshu+sinhu)sinhu.du
∫ln(x+√x2−1)dx=∫ln(eu)sinhu.du
∫ln(x+√x2−1)dx=∫usinhu.du
∫ln(x+√x2−1)dx=∫(usinhu+coshu)−coshu.du
∫ln(x+√x2−1)dx=ucoshu−sinhu+C
∫ln(x+√x2−1)dx=xln(x+√x2−1)−√x2−1+C