How do you find the integral ln(x)/(x^2)ln(x)x2? Calculus Techniques of Integration Integration by Parts 1 Answer bp Sep 7, 2015 -lnx /x -1/x +C−lnxx−1x+C Explanation: Integration by parts can be done in this case, int (ln x)/x^2 dx∫lnxx2dx =int lnx*d/dx(-1/x) dx∫lnx⋅ddx(−1x)dx= -lnx /x -int d/dx (lnx)*(-1)/x dx+C−lnxx−∫ddx(lnx)⋅−1xdx+C= -lnx /x+int 1/x^2 dx +C−lnxx+∫1x2dx+C= -lnx /x -1/x +C−lnxx−1x+C Answer link Related questions How do I find the integral int(x*ln(x))dx∫(x⋅ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx∫(cos(x)ex)dx ? How do I find the integral int(x*cos(5x))dx∫(x⋅cos(5x))dx ? How do I find the integral int(x*e^-x)dx∫(x⋅e−x)dx ? How do I find the integral int(x^2*sin(pix))dx∫(x2⋅sin(πx))dx ? How do I find the integral intln(2x+1)dx∫ln(2x+1)dx ? How do I find the integral intsin^-1(x)dx∫sin−1(x)dx ? How do I find the integral intarctan(4x)dx∫arctan(4x)dx ? How do I find the integral intx^5*ln(x)dx∫x5⋅ln(x)dx ? How do I find the integral intx*2^xdx∫x⋅2xdx ? See all questions in Integration by Parts Impact of this question 2590 views around the world You can reuse this answer Creative Commons License