How do you find the integral (lnx)^2 / x^3(lnx)2x3?

1 Answer
Apr 29, 2018

I=-1/(4x^2)[2(lnx)^2+lnx+1]+cI=14x2[2(lnx)2+lnx+1]+c

Explanation:

Here,

I=int(lnx)^2/x^3dxI=(lnx)2x3dx

=int(lnx)^2*x^(-3)dx=(lnx)2x3dx

"Using "color(blue)"Integration by Parts"Using Integration by Parts.

I=(lnx)^2intx^(-3)dx-int(d/(dx)((lnx)^2)intx^(-3)dx)dxI=(lnx)2x3dx(ddx((lnx)2)x3dx)dx

=(lnx)^2(x^(-2)/(-2))-int2(lnx)*1/x(x^(-2)/(-2))dx=(lnx)2(x22)2(lnx)1x(x22)dx

=-(lnx)^2/(2x^2)+int(lnx)(x^(-3))dx=(lnx)22x2+(lnx)(x3)dx

Again, "using "color(blue)"Integration by Parts"using Integration by Parts.

I=-(lnx)^2/(2x^2)+[lnx(x^(-2)/(-2))-int1/x(x^(-2)/(-2))dx]I=(lnx)22x2+[lnx(x22)1x(x22)dx]

=-(lnx)^2/(2x^2)-(lnx)/(2x^2)+1/2intx^(-3)dx=(lnx)22x2lnx2x2+12x3dx

=-(lnx)^2/(2x^2)-(lnx)/(2x^2)+1/2(x^(-2)/(-2))+c=(lnx)22x2lnx2x2+12(x22)+c

=-(lnx)^2/(2x^2)-(lnx)/(2x^2)-1/(4x^2)+c=(lnx)22x2lnx2x214x2+c

I=-1/(4x^2)[2(lnx)^2+lnx+1]+cI=14x2[2(lnx)2+lnx+1]+c