How do you find the integral of ((1+sinx)/cosx)dx(1+sinxcosx)dx?

1 Answer
Jun 6, 2018

ln|tanx+secx|-ln|cosx|+Cln|tanx+secx|ln|cosx|+C

Explanation:

We can start by rewriting our integral as

int (1/cosx)+color(blue)((sinx/cosx)) dx(1cosx)+(sinxcosx)dx

What I have in blue is equal to tanxtanx, so now we have the following integral:

int (1/cosx+tanx) dx(1cosx+tanx)dx

The integral of the sum is equal to the sum of the integrals, so we can rewrite the above expression as

color(springgreen)(int (1/cosx)dx)+color(orchid)(int (tanx)dx)(1cosx)dx+(tanx)dx

Integrating 1/cosx1cosx

1/cosx1cosx is equivalent to secxsecx. Now, we have the integral

color(springgreen)(int (secx) dx)(secx)dx, which evaluates to

color(springgreen)(ln|tanx+secx| +C)ln|tanx+secx|+C

Remember, this is one part of our integral.

Integrating tanxtanx

We can rewrite tanxtanx as sinx/cosxsinxcosx. Doing this, we get

color(orchid)(int (sinx/cosx) dx)(sinxcosx)dx

Whenever we see a function and its derivative, it's a good idea to use u-substitution. Let's define

color(orchid)(u=cosx)u=cosx

From this, we know that

color(orchid)(du=-sinx)du=sinx

Since we have sinxsinx, not -sinxsinx, we can put a negative in front of the integral. Plugging in, we get

color(orchid)(-int (1/u du))(1udu)

which evaluates to

color(orchid)(-ln|u|)ln|u|

Now, we need to back-substitute (plug uu back in). We get

color(orchid)(-ln|cosx|+C)ln|cosx|+C

Thus, the integral of ((1+sinx)/cosx) dx(1+sinxcosx)dx is

bar (ul( |color(white)(2/2)(ln|tanx+secx|-ln|cosx|+C)color(white)(2/2) |

Hope this helps!