How do you find the integral of 1x225x2dx?

1 Answer
Mar 1, 2015

The answer is: 25x225x+c.

We have make a substitution:

x=5sintdx=5costdt,

so:

1x225x2dx=1(5sint)22525sin2t5costdt=

=5cost(5sint)225(1sin2t)dt=

=5cost25sin2t5costdt=1251sin2tdt=

=1251sin2tdt=125cott+c=125costsint+c=(1)

since

sint=x5 and cost=1sin2t=1x225=25x25

than:

(1)=12525x255x+c=25x225x+c.