How do you find the integral of e2xcos3xdx? Calculus Techniques of Integration Integration by Parts 1 Answer maganbhai P. Mar 26, 2018 ∫e2xcos3xdx=e2x√13cos(2x−tan−1(32))+c Explanation: We know that, ∫eaxcosbxdx=eax√a2+b2cos(bx−θ)+c where,cosθ=a√a2+b2andsinθ=b√a2+b2 Substituting , a=2,andb=3, we get cosθ=2√22+32=2√13andsinθ=3√22+32=3√13 ⇒tanθ=sinθcosθ=3√132√13=32⇒θ=tan−1(32) So, ∫e2xcos3xdx=e2x√13cos(2x−tan−1(32))+c Answer link Related questions How do I find the integral ∫(x⋅ln(x))dx ? How do I find the integral ∫(cos(x)ex)dx ? How do I find the integral ∫(x⋅cos(5x))dx ? How do I find the integral ∫(x⋅e−x)dx ? How do I find the integral ∫(x2⋅sin(πx))dx ? How do I find the integral ∫ln(2x+1)dx ? How do I find the integral ∫sin−1(x)dx ? How do I find the integral ∫arctan(4x)dx ? How do I find the integral ∫x5⋅ln(x)dx ? How do I find the integral ∫x⋅2xdx ? See all questions in Integration by Parts Impact of this question 13262 views around the world You can reuse this answer Creative Commons License