How do you find the integral of e2xcos3xdx?

1 Answer
Mar 26, 2018

e2xcos3xdx=e2x13cos(2xtan1(32))+c

Explanation:

We know that,

eaxcosbxdx=eaxa2+b2cos(bxθ)+c

where,cosθ=aa2+b2andsinθ=ba2+b2

Substituting , a=2,andb=3, we get

cosθ=222+32=213andsinθ=322+32=313

tanθ=sinθcosθ=313213=32θ=tan1(32)

So,

e2xcos3xdx=e2x13cos(2xtan1(32))+c