How do you find the Integral of #e^(3x)* cos( 3 x ) dx#?

1 Answer
Jun 18, 2018

#I=(1/3e^(3x)sin3x+1/3e^(3x)cos3x)/2#

Explanation:

#I=inte^(3x)cos(3x)dx#

Apply Integration by Parts

#color(green)(intudv=uv-intvdu)" "rarr "# # color(blue)("the trigonometric part will be " dv " in this case" color(red)( " i.e " cos3xdx=dv)#

#I=1/3e^(3x)sin3x-intcancel(1/3)sin3x*(cancel(3)e^(3x))dx#

Apply integration by Parts once more

#I=1/3e^3xsin3x+1/3e^(3x)cos3x-cancel(1/3)intcancel(3)e^(3x)cos3xdx#

#I=1/3e^(3x)sin3x+1/3e^(3x)cos3x-color(blue)(I#

#color(blue)("since " I=inte^(3x)cos3xdx#

#2I=1/3e^(3x)sin3x+1/3e^(3x)cos3x#

#I=(1/3e^(3x)sin3x+1/3e^(3x)cos3x)/2#