How do you find the integral of #int(sinx)/(cos^3(x)) dx?#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer GiĆ³ Oct 19, 2015 I found: #1/(2cos^2(x))+c# Explanation: I would try considering that: #d[cos(x)]=-sin(x)dx# and write: #int-(d[cos(x)])/cos^3(x)=# and integrate as if #cos(x)# were a simple #x#; #=-intcos^-3(x)d[cos(x)]==-cos^-2(x)/-2+c=1/(2cos^2(x))+c# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 3093 views around the world You can reuse this answer Creative Commons License