How do you find the integral of int z/e^(3z) dz?

1 Answer
Mar 3, 2018

-z/3 e^{-3z}-1/9 e^{-3z}+C

Explanation:

Using integration by parts (with z as the "first function" and e^{-3z} as the "second function"):

int z e^{-3z} dz = z times int e^{-3z}dz - int {(d/dz z) int e^{-3z}dz } dz
= z times (-1/3 e^{-3z})- int {1 times (-1/3 e^{-3z})}dz
=-z/3 e^{-3z} + 1/3 int e^{-3z} dz = -z/3 e^{-3z}-1/9 e^{-3z}+C