How do you find the integral of #(sin^(-1)x)^2#?
1 Answer
Explanation:
#I=int(sin^-1x)^2dx#
We will use integration by parts. This takes the form
#{(u=(sin^-1x)^2),(dv=dx):}#
Differentiating
#{(du=(2sin^-1x)/sqrt(1-x^2)dx),(v=x):}#
Note that differentiating
Then:
#I=uv-intvdu=x(sin^-1x)^2-int(2x(sin^-1x))/sqrt(1-x^2)dx#
Perform integration by parts again. Note that the portion
#int(2x)/sqrt(1-x^2)dx=-intt^(-1/2)dt=-2sqrtt=-2sqrt(1-x^2)#
Then for integration by parts let:
#{(u=sin^-1x" "=>" "du=1/sqrt(1-x^2)dx),(dv=(2x)/sqrt(1-x^2)dx" "=>" "v=-2sqrt(1-x^2)):}#
So:
#I=x(sin^-1x)^2-(uv-intvdu)#
#I=x(sin^-1x)^2-uv+intvdu#
#I=x(sin^-1x)^2-sin^-1x(-2sqrt(1-x^2))+int(-2sqrt(1-x^2))/sqrt(1-x^2)dx#
#I=x(sin^-1x)^2+2sqrt(1-x^2)sin^-1x-2intdx#
#I=x(sin^-1x)^2+2sqrt(1-x^2)sin^-1x-2x+C#