How do you find the integral of #(sin^2(6x))(cos^2(6x))dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Konstantinos Michailidis Jun 4, 2016 You can rewrite this as follows #int(sin^2(6x))(cos^2(6x))dx=int (1/2*2*sin(6x)*cos(6x))^2dx= int 1/4(sin12x)^2 dx# Remember that #cos2x=cos^2x-sin^2x=1-2sin^2x=> sin^2x=1/2*(1-cos2x)# Hence #1/4int (sin^2 12x)dx=int 1/8(1-cos24x)dx=x/8-1/192*sin(24 x)+c# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 5925 views around the world You can reuse this answer Creative Commons License