How do you find the integral of tln(t)dt?

1 Answer
Sep 4, 2015

use integration by parts to find tln(t)dt=23t32(ln(t)23)+C

Explanation:

We use integration by parts by noting that t=ddt(23t32).
Therefore
tln(t)dt=23ln(t)d(t32)=23(ln(t)t32t32dln(t)).
Since ddt(ln(t))=1t this gives
tln(t)dt=23(ln(t)t32t32tdt)=23(ln(t)t32t12dt)=23(ln(t)t3223t32)+C=23t32(ln(t)23)+C
With C the integration constant.