How do you find the integral of tanˉ¹(2x) dx?

1 Answer
Jul 14, 2018

The answer is =xarctan(2x)-1/4ln(4x^2+1)+C

Explanation:

Perform a substitution

u=2x, =>, du=2dx

The integral is

I=intarctan(2x)dx

=1/2intarctanudu

Perform an integration by parts

intfg'dx=fg-intf'gdx

Here,

f=arctanu, =>, f'=1/(u^2+1)

g'=1, =>, g=u

Therefore,

I=1/2u*arctanu-1/2int(udu)/(u^2+1)

=1/2u*arctanu-1/4ln(u^2+1)

=1/2*2xarctan(2x)-1/4ln(4x^2+1)+C

=xarctan(2x)-1/4ln(4x^2+1)+C