How do you find the integral of x5ex2?

1 Answer
Apr 25, 2018

12x4ex2x2ex2+ex2+C

Explanation:

x5ex2dx

=12x4ex22xdx

=12x4ex2dx2

Integration by substitution

x2=u

d(x2)=du

=12x4ex2dx2=12u2eudu

Integration by Parts

=12u2d(eu)

=12(u2eu2ueudu)

Using integration by Parts again

=12(u2eu2ud(eu))

=12(u2eu2ueu(2eudu))

=12u2euueu+eu+C

Reverse The Substitution

=12x4ex2x2ex2+ex2+C